3.3.86 \(\int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx\) [286]

3.3.86.1 Optimal result
3.3.86.2 Mathematica [B] (verified)
3.3.86.3 Rubi [A] (verified)
3.3.86.4 Maple [B] (warning: unable to verify)
3.3.86.5 Fricas [A] (verification not implemented)
3.3.86.6 Sympy [F]
3.3.86.7 Maxima [B] (verification not implemented)
3.3.86.8 Giac [F]
3.3.86.9 Mupad [F(-1)]

3.3.86.1 Optimal result

Integrand size = 37, antiderivative size = 152 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=-\frac {(7 A-C) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(5 A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}} \]

output
-1/4*(7*A-C)*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a* 
sec(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)-1/2*(A+C)*sin(d*x+c)*sec(d*x+c)^(1/2) 
/d/(a+a*sec(d*x+c))^(3/2)+1/2*(5*A+C)*sin(d*x+c)*sec(d*x+c)^(1/2)/a/d/(a+a 
*sec(d*x+c))^(1/2)
 
3.3.86.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(383\) vs. \(2(152)=304\).

Time = 1.99 (sec) , antiderivative size = 383, normalized size of antiderivative = 2.52 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\frac {10 A \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)+2 C \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)+8 A \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))} \sin (c+d x)+7 \sqrt {2} A \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)-\sqrt {2} C \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)+7 \sqrt {2} A \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec (c+d x) \tan (c+d x)-\sqrt {2} C \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec (c+d x) \tan (c+d x)+2 C \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) (1+\sec (c+d x)) \tan (c+d x)+2 C \arcsin \left (\sqrt {\sec (c+d x)}\right ) (1+\sec (c+d x)) \tan (c+d x)}{4 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{3/2}} \]

input
Integrate[(A + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^ 
(3/2)),x]
 
output
(10*A*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x] + 2*C*Sqrt[1 
- Sec[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x] + 8*A*Sqrt[-((-1 + Sec[c + 
 d*x])*Sec[c + d*x])]*Sin[c + d*x] + 7*Sqrt[2]*A*ArcTan[(Sqrt[2]*Sqrt[Sec[ 
c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Tan[c + d*x] - Sqrt[2]*C*ArcTan[(Sqrt[2 
]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Tan[c + d*x] + 7*Sqrt[2]*A*A 
rcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sec[c + d*x]*Ta 
n[c + d*x] - Sqrt[2]*C*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c 
+ d*x]]]*Sec[c + d*x]*Tan[c + d*x] + 2*C*ArcSin[Sqrt[1 - Sec[c + d*x]]]*(1 
 + Sec[c + d*x])*Tan[c + d*x] + 2*C*ArcSin[Sqrt[Sec[c + d*x]]]*(1 + Sec[c 
+ d*x])*Tan[c + d*x])/(4*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^( 
3/2))
 
3.3.86.3 Rubi [A] (verified)

Time = 0.72 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.01, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.216, Rules used = {3042, 4573, 27, 3042, 4501, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4573

\(\displaystyle -\frac {\int -\frac {a (5 A+C)-2 a (A-C) \sec (c+d x)}{2 \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (5 A+C)-2 a (A-C) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (5 A+C)-2 a (A-C) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4501

\(\displaystyle \frac {\frac {2 a (5 A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-a (7 A-C) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 a (5 A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-a (7 A-C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4295

\(\displaystyle \frac {\frac {2 a (7 A-C) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {2 a (5 A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {2 a (5 A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {\sqrt {2} \sqrt {a} (7 A-C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}\)

input
Int[(A + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^(3/2)) 
,x]
 
output
-1/2*((A + C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*(a + a*Sec[c + d*x])^(3/ 
2)) + (-((Sqrt[2]*Sqrt[a]*(7*A - C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Si 
n[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/d) + (2*a*(5*A + C)*Sqrt[ 
Sec[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/(4*a^2)
 

3.3.86.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4501
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[(a*A*m 
 - b*B*n)/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x] 
, x] /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a 
^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]
 

rule 4573
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a) 
*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m 
+ 1))), x] + Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*C 
sc[e + f*x])^n*Simp[b*C*n + A*b*(2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - 
n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && EqQ[ 
a^2 - b^2, 0] && LtQ[m, -2^(-1)]
 
3.3.86.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(317\) vs. \(2(127)=254\).

Time = 1.04 (sec) , antiderivative size = 318, normalized size of antiderivative = 2.09

method result size
default \(-\frac {\left (-A \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-C \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+7 A \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )}{\sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right ) \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}-C \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )}{\sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right ) \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}-9 A \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-C \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right ) \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}}{4 a^{2} d \sqrt {-\frac {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}}\) \(318\)
parts \(-\frac {A \left (-\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+7 \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )}{\sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right ) \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}+9 \cot \left (d x +c \right )-9 \csc \left (d x +c \right )\right ) \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}}{4 d \,a^{2} \sqrt {-\frac {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}}-\frac {C \left (\sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+\arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}-2 \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sec \left (d x +c \right )^{\frac {3}{2}} \cos \left (d x +c \right )^{2}}{4 d \,a^{2} \left (\cos \left (d x +c \right )+1\right )^{2} \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(373\)

input
int((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x,method=_R 
ETURNVERBOSE)
 
output
-1/4/a^2/d*(-A*(1-cos(d*x+c))^3*csc(d*x+c)^3-C*(1-cos(d*x+c))^3*csc(d*x+c) 
^3+7*A*arctan(1/(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d*x+c)+csc( 
d*x+c)))*(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)-C*arctan(1/(-(1-cos(d*x+ 
c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d*x+c)+csc(d*x+c)))*(-(1-cos(d*x+c))^2*c 
sc(d*x+c)^2-1)^(1/2)-9*A*(-cot(d*x+c)+csc(d*x+c))-C*(-cot(d*x+c)+csc(d*x+c 
)))*(-2*a/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)/(-((1-cos(d*x+c))^2*csc 
(d*x+c)^2+1)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)
 
3.3.86.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 426, normalized size of antiderivative = 2.80 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\left [-\frac {\sqrt {2} {\left ({\left (7 \, A - C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (7 \, A - C\right )} \cos \left (d x + c\right ) + 7 \, A - C\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - \frac {4 \, {\left (4 \, A \cos \left (d x + c\right )^{2} + {\left (5 \, A + C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, \frac {\sqrt {2} {\left ({\left (7 \, A - C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (7 \, A - C\right )} \cos \left (d x + c\right ) + 7 \, A - C\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + \frac {2 \, {\left (4 \, A \cos \left (d x + c\right )^{2} + {\left (5 \, A + C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \]

input
integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, al 
gorithm="fricas")
 
output
[-1/8*(sqrt(2)*((7*A - C)*cos(d*x + c)^2 + 2*(7*A - C)*cos(d*x + c) + 7*A 
- C)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + 
c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 
 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*(4*A*cos(d*x + c)^2 + (5* 
A + C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/ 
sqrt(cos(d*x + c)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), 
 1/4*(sqrt(2)*((7*A - C)*cos(d*x + c)^2 + 2*(7*A - C)*cos(d*x + c) + 7*A - 
 C)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c 
))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 2*(4*A*cos(d*x + c)^2 + (5*A + C 
)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt( 
cos(d*x + c)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]
 
3.3.86.6 Sympy [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {A + C \sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

input
integrate((A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(3/2)/sec(d*x+c)**(1/2),x)
 
output
Integral((A + C*sec(c + d*x)**2)/((a*(sec(c + d*x) + 1))**(3/2)*sqrt(sec(c 
 + d*x))), x)
 
3.3.86.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 22898 vs. \(2 (127) = 254\).

Time = 1.11 (sec) , antiderivative size = 22898, normalized size of antiderivative = 150.64 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

input
integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, al 
gorithm="maxima")
 
output
-1/4*((4*(7*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/ 
2*d*x + 1/2*c) + 1) - 7*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^ 
2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 8*sin(1/2*d*x + 1/2*c))*cos(3/2*d*x + 3/ 
2*c)^4 + 63*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1 
/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 
 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(1/2*d*x + 1/2*c)^4 + 4*(7*log(cos(1/2* 
d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 7* 
log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2* 
c) + 1) - 8*sin(1/2*d*x + 1/2*c))*sin(3/2*d*x + 3/2*c)^4 + 70*(log(cos(1/2 
*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - l 
og(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c 
) + 1))*cos(1/2*d*x + 1/2*c)^2*sin(1/2*d*x + 1/2*c)^2 + 7*(log(cos(1/2*d*x 
 + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(c 
os(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 
1))*sin(1/2*d*x + 1/2*c)^4 - 8*sin(1/2*d*x + 1/2*c)^5 + 28*(7*(log(cos(1/2 
*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - l 
og(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c 
) + 1))*cos(1/2*d*x + 1/2*c) - 8*cos(1/2*d*x + 1/2*c)*sin(1/2*d*x + 1/2*c) 
)*cos(3/2*d*x + 3/2*c)^3 + 4*(21*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x 
 + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 ...
 
3.3.86.8 Giac [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, al 
gorithm="giac")
 
output
integrate((C*sec(d*x + c)^2 + A)/((a*sec(d*x + c) + a)^(3/2)*sqrt(sec(d*x 
+ c))), x)
 
3.3.86.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int((A + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(1 
/2)),x)
 
output
int((A + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(1 
/2)), x)